Copied to
clipboard

G = C32×SD16order 144 = 24·32

Direct product of C32 and SD16

direct product, metacyclic, nilpotent (class 3), monomial

Aliases: C32×SD16, C246C6, C4.2C62, C82(C3×C6), D4.(C3×C6), Q82(C3×C6), (C3×Q8)⋊6C6, (C3×C24)⋊10C2, (C3×D4).4C6, (C3×C6).42D4, C6.21(C3×D4), C12.24(C2×C6), (Q8×C32)⋊7C2, C2.4(D4×C32), (D4×C32).3C2, (C3×C12).51C22, SmallGroup(144,107)

Series: Derived Chief Lower central Upper central

C1C4 — C32×SD16
C1C2C4C12C3×C12Q8×C32 — C32×SD16
C1C2C4 — C32×SD16
C1C3×C6C3×C12 — C32×SD16

Generators and relations for C32×SD16
 G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >

Subgroups: 90 in 60 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, D4, Q8, C32, C12, C12, C2×C6, SD16, C3×C6, C3×C6, C24, C3×D4, C3×Q8, C3×C12, C3×C12, C62, C3×SD16, C3×C24, D4×C32, Q8×C32, C32×SD16
Quotients: C1, C2, C3, C22, C6, D4, C32, C2×C6, SD16, C3×C6, C3×D4, C62, C3×SD16, D4×C32, C32×SD16

Smallest permutation representation of C32×SD16
On 72 points
Generators in S72
(1 34 59)(2 35 60)(3 36 61)(4 37 62)(5 38 63)(6 39 64)(7 40 57)(8 33 58)(9 30 17)(10 31 18)(11 32 19)(12 25 20)(13 26 21)(14 27 22)(15 28 23)(16 29 24)(41 67 51)(42 68 52)(43 69 53)(44 70 54)(45 71 55)(46 72 56)(47 65 49)(48 66 50)
(1 30 41)(2 31 42)(3 32 43)(4 25 44)(5 26 45)(6 27 46)(7 28 47)(8 29 48)(9 51 59)(10 52 60)(11 53 61)(12 54 62)(13 55 63)(14 56 64)(15 49 57)(16 50 58)(17 67 34)(18 68 35)(19 69 36)(20 70 37)(21 71 38)(22 72 39)(23 65 40)(24 66 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(18 20)(19 23)(22 24)(25 31)(27 29)(28 32)(33 39)(35 37)(36 40)(42 44)(43 47)(46 48)(49 53)(50 56)(52 54)(57 61)(58 64)(60 62)(65 69)(66 72)(68 70)

G:=sub<Sym(72)| (1,34,59)(2,35,60)(3,36,61)(4,37,62)(5,38,63)(6,39,64)(7,40,57)(8,33,58)(9,30,17)(10,31,18)(11,32,19)(12,25,20)(13,26,21)(14,27,22)(15,28,23)(16,29,24)(41,67,51)(42,68,52)(43,69,53)(44,70,54)(45,71,55)(46,72,56)(47,65,49)(48,66,50), (1,30,41)(2,31,42)(3,32,43)(4,25,44)(5,26,45)(6,27,46)(7,28,47)(8,29,48)(9,51,59)(10,52,60)(11,53,61)(12,54,62)(13,55,63)(14,56,64)(15,49,57)(16,50,58)(17,67,34)(18,68,35)(19,69,36)(20,70,37)(21,71,38)(22,72,39)(23,65,40)(24,66,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)(25,31)(27,29)(28,32)(33,39)(35,37)(36,40)(42,44)(43,47)(46,48)(49,53)(50,56)(52,54)(57,61)(58,64)(60,62)(65,69)(66,72)(68,70)>;

G:=Group( (1,34,59)(2,35,60)(3,36,61)(4,37,62)(5,38,63)(6,39,64)(7,40,57)(8,33,58)(9,30,17)(10,31,18)(11,32,19)(12,25,20)(13,26,21)(14,27,22)(15,28,23)(16,29,24)(41,67,51)(42,68,52)(43,69,53)(44,70,54)(45,71,55)(46,72,56)(47,65,49)(48,66,50), (1,30,41)(2,31,42)(3,32,43)(4,25,44)(5,26,45)(6,27,46)(7,28,47)(8,29,48)(9,51,59)(10,52,60)(11,53,61)(12,54,62)(13,55,63)(14,56,64)(15,49,57)(16,50,58)(17,67,34)(18,68,35)(19,69,36)(20,70,37)(21,71,38)(22,72,39)(23,65,40)(24,66,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)(25,31)(27,29)(28,32)(33,39)(35,37)(36,40)(42,44)(43,47)(46,48)(49,53)(50,56)(52,54)(57,61)(58,64)(60,62)(65,69)(66,72)(68,70) );

G=PermutationGroup([[(1,34,59),(2,35,60),(3,36,61),(4,37,62),(5,38,63),(6,39,64),(7,40,57),(8,33,58),(9,30,17),(10,31,18),(11,32,19),(12,25,20),(13,26,21),(14,27,22),(15,28,23),(16,29,24),(41,67,51),(42,68,52),(43,69,53),(44,70,54),(45,71,55),(46,72,56),(47,65,49),(48,66,50)], [(1,30,41),(2,31,42),(3,32,43),(4,25,44),(5,26,45),(6,27,46),(7,28,47),(8,29,48),(9,51,59),(10,52,60),(11,53,61),(12,54,62),(13,55,63),(14,56,64),(15,49,57),(16,50,58),(17,67,34),(18,68,35),(19,69,36),(20,70,37),(21,71,38),(22,72,39),(23,65,40),(24,66,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(18,20),(19,23),(22,24),(25,31),(27,29),(28,32),(33,39),(35,37),(36,40),(42,44),(43,47),(46,48),(49,53),(50,56),(52,54),(57,61),(58,64),(60,62),(65,69),(66,72),(68,70)]])

C32×SD16 is a maximal subgroup of   C247D6  C24.32D6  C24.40D6

63 conjugacy classes

class 1 2A2B3A···3H4A4B6A···6H6I···6P8A8B12A···12H12I···12P24A···24P
order1223···3446···66···68812···1212···1224···24
size1141···1241···14···4222···24···42···2

63 irreducible representations

dim111111112222
type+++++
imageC1C2C2C2C3C6C6C6D4SD16C3×D4C3×SD16
kernelC32×SD16C3×C24D4×C32Q8×C32C3×SD16C24C3×D4C3×Q8C3×C6C32C6C3
# reps1111888812816

Matrix representation of C32×SD16 in GL3(𝔽73) generated by

6400
010
001
,
6400
0640
0064
,
100
0667
066
,
7200
010
0072
G:=sub<GL(3,GF(73))| [64,0,0,0,1,0,0,0,1],[64,0,0,0,64,0,0,0,64],[1,0,0,0,6,6,0,67,6],[72,0,0,0,1,0,0,0,72] >;

C32×SD16 in GAP, Magma, Sage, TeX

C_3^2\times {\rm SD}_{16}
% in TeX

G:=Group("C3^2xSD16");
// GroupNames label

G:=SmallGroup(144,107);
// by ID

G=gap.SmallGroup(144,107);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-2,-2,432,457,3244,1630,88]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽